Skip to content Skip to sidebar Skip to footer

Tutorial Data Science Dengan Pyhton : Cara Menggunakan Stemming dan Lemmatization di Python

Cara Menggunakan Stemming dan Lemmatization di Python



Di bidang Pemrosesan Bahasa Alami kami menemukan situasi di mana dua atau lebih kata memiliki akar yang sama. Misalnya, tiga kata setuju, setuju dan setuju memiliki akar kata yang sama setuju. Pencarian yang melibatkan salah satu dari kata-kata ini harus memperlakukannya sebagai kata yang sama yang merupakan kata dasar. Jadi menjadi penting untuk menghubungkan semua kata ke dalam akar kata mereka. Pustaka NLTK memiliki metode untuk melakukan penautan ini dan memberikan keluaran yang menunjukkan akar kata.

Program di bawah ini menggunakan Algoritma Porter Stemming untuk stemming.

import nltk
from nltk.stem.porter import PorterStemmer
porter_stemmer = PorterStemmer()

word_data = "It originated from the idea that there are readers who prefer learning new skills from the comforts of their drawing rooms"
# First Word tokenization
nltk_tokens = nltk.word_tokenize(word_data)
#Next find the roots of the word
for w in nltk_tokens:
       print "Actual: %s  Stem: %s"  % (w,porter_stemmer.stem(w))

Ketika kita mengeksekusi kode di atas, hasilnya adalah sebagai berikut.

Actual: It  Stem: It
Actual: originated  Stem: origin
Actual: from  Stem: from
Actual: the  Stem: the
Actual: idea  Stem: idea
Actual: that  Stem: that
Actual: there  Stem: there
Actual: are  Stem: are
Actual: readers  Stem: reader
Actual: who  Stem: who
Actual: prefer  Stem: prefer
Actual: learning  Stem: learn
Actual: new  Stem: new
Actual: skills  Stem: skill
Actual: from  Stem: from
Actual: the  Stem: the
Actual: comforts  Stem: comfort
Actual: of  Stem: of
Actual: their  Stem: their
Actual: drawing  Stem: draw
Actual: rooms  Stem: room

Lemmatisasi mirip dengan stemming tetapi membawa konteks pada kata-kata, jadi ini melangkah lebih jauh dengan menghubungkan kata-kata yang memiliki arti serupa ke satu kata. Misalnya jika sebuah paragraf memiliki kata-kata seperti mobil, kereta api dan mobil, maka itu akan menghubungkan semuanya dengan mobil. Dalam program di bawah ini kami menggunakan database leksikal WordNet untuk lemmatisasi.

import nltk
from nltk.stem import WordNetLemmatizer
wordnet_lemmatizer = WordNetLemmatizer()

word_data = "It originated from the idea that there are readers who prefer learning new skills from the comforts of their drawing rooms"
nltk_tokens = nltk.word_tokenize(word_data)
for w in nltk_tokens:
       print "Actual: %s  Lemma: %s"  % (w,wordnet_lemmatizer.lemmatize(w))

Ketika kita mengeksekusi kode di atas, hasilnya adalah sebagai berikut.

Actual: It  Lemma: It
Actual: originated  Lemma: originated
Actual: from  Lemma: from
Actual: the  Lemma: the
Actual: idea  Lemma: idea
Actual: that  Lemma: that
Actual: there  Lemma: there
Actual: are  Lemma: are
Actual: readers  Lemma: reader
Actual: who  Lemma: who
Actual: prefer  Lemma: prefer
Actual: learning  Lemma: learning
Actual: new  Lemma: new
Actual: skills  Lemma: skill
Actual: from  Lemma: from
Actual: the  Lemma: the
Actual: comforts  Lemma: comfort
Actual: of  Lemma: of
Actual: their  Lemma: their
Actual: drawing  Lemma: drawing
Actual: rooms  Lemma: room

Post a Comment for "Tutorial Data Science Dengan Pyhton : Cara Menggunakan Stemming dan Lemmatization di Python"

close